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We prove the existence of at least one non-decreasing sequence of positive
eigenvalues for the problem ∆2

p(x)u −4p(x)u = λ|u|p(x)−2u, in Ω

u ∈W 2,p(x)(Ω)∩W 1,p(x)
0 (Ω),

Our analysis mainly relies on variational arguments involving
Ljusternik-Schnirelmann theory.

1 Introduction

Consider the following nonlinear eigenvalue problem ∆2
p(x)u −∆p(x)u = λ|u|p(x)−2u, in Ω

u ∈W 2,p(x)
0 (Ω)∩W 1,p(x)

0 (Ω),
(1.1)

where Ω is a bounded domain in R
N (N ≥ 4).

The real λ is a parameter which plays the role of eigen-
value. For a function p(.) ∈ C(Ω), we assume the fol-
lowing hypothesis

1 < p− = min
x∈Ω

p(x) ≤ p+ = max
x∈Ω

p(x) < +∞. (1.2)

∆2
p(x)u := ∆(|∆u|p(x)−2∆u), is the p(x)-biharmonic op-

erator which is a natural generalization of the p-
biharmonic (where the exponent p is constant) and
∆p(x)u := div(|∇u|p(x)−2∇u) is the p(x)-harmonic oper-
ator.

It is well known that elliptic equations involv-
ing the non-standard growth are not trivial general-
izations of similar problems studied in the constant
case since the non-standard growth operator is not
homogeneous and, thus, some techniques which can
be applied in the case of the constant growth oper-
ators will fail in this new situation, such as the La-
grange multiplier theorem, see, e.g [1, 2]. Problerms

with p(x)-growth conditions are an interesting topic,
which arises from nonlinear electrorheological fluids
and elastic mechanics.

Recently for the case p(x) ≡ p constant Giri,
Choudhuri and Pradhan [3] proved the existence
and concentration phenomena of solutions on the set
V −1{0} for the following p-biharmonic elliptic equa-
tion:
∆2
pu−∆pu+λV (x)|u|p−2u = f (x,u) x ∈RN, as λ→∞

unther some assumptions on the nonlinear function
f . By variational methods, Lihua Liu and Caisheng
Chen [4] establish the existence of infinitely many
high-energy solutions to the equation

∆2
pu −∆pu +V (x)|u|p−2u = f (x,u), x ∈RN,

with a concave-convex nonlinearity,i.e.,
f (x,u) = λh1(x)|u|m−2u + h2(x)|u|q−2u, 1 < m < p < q <

p∗ = pN
N−2p .

In our case by using the Ljusternik-Schnirelmann the-
ory we obtain the existence of infinitely many solu-
tions for the problem (1.1).

The outline of the rest of the paper is as follows. In
Section 2 we present some definitions and basic resuls
that are necessary. In Section 3 we give the proof of
our main result about existence of solutions for prob-
lem (1.1).
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2 Preliminaries and Useful re-
sults

We state some basic properties of the variable expo-
nent Lebesgue-Sobolev spaces Lp(.)(Ω) andWm,p(.)(Ω).
We refer the reader to the monograph by [5] and to the
references therein. Define the generalized Lebesgue
space by

Lp(.)(Ω) =
{
u : Ω→R measurable and

∫
Ω

|u(x)|p(x)dx <∞
}
,

endowed with the Luxemburg norm

|u|p(.) = inf
{
µ > 0 :

∫
Ω

∣∣∣u
µ

∣∣∣p(x)
dx ≤ 1

}
To manipulate this spaces better, we use the modular
mapping

ρ : Lp(.)(Ω)→R

defined by

ρ(u) =
∫
Ω

|u|p(x) dx

Proposition 2.1 (6) Under the hypothesis (1.2), the
space (Lp(x)(Ω), | · |p(x)) is separable, uniformly convex, re-
flexive and its conjugate dual space is Lp

′(.)(Ω) where p′(.)
is the conjugate function of p(.), related by

p′(x) =
p(x)

p(x)− 1
, ∀x ∈Ω.

For u ∈ Lp(.)(Ω) and v ∈ Lp′(.)(Ω) we have∣∣∣∣∫
Ω

u(x)v(x)dx
∣∣∣∣ ≤ ( 1

p−
+

1
p′−

)
|u|p(.)|v|p′(.) ≤ 2|u|p(.)|v|p′(.).

Sobolev space with variable exponent Wm,p(.)(Ω) are
defined as

Wm,p(.)(Ω) =
{
u ∈ Lp(.)(Ω) :Dαu ∈ Lp(.)(Ω), |α| ≤m

}
,

where Dαu = ∂|α|

∂x
α1
1 ∂x

α2
2 ...∂x

αN
N

u, (the derivation in dis-

tributions sense) with α = (α1, . . . ,αN ) is a multi-index

and |α| =
N∑
i=1

αi . The space Wm,p(.)(Ω), equipped with

the norm
‖u‖m,p(x) =

∑
|α|≤m

|Dαu|p(x),

is a Banach, separable and reflexive space. For more
details, we refer the reader to [6, 7, 8] and [ 9].
We denote by W

m,p(x)
0 (Ω) the closure of C∞0 (Ω) in

Wm,p(x)(Ω).
Note that the weak solutions of the problem (1.1) are

considered in the Sobolev space

W 2,p(x)(Ω)∩W 1,p(x)
0 (Ω) is equiped with the norm

‖u‖p(x) = |4u|p(x) + |∇u|p(x)

In the sequel, we Set

X =W 2,p(x)
0 (Ω)∩W 1,p(x)

0 (Ω)

Then, endowed with the norm ‖u‖p(x), X is a separa-
ble and reflexive Banach space. Moreover, ‖.‖p(x) and
|4u|p(x) are two equivalent norms of X by [10, Theo-
rem4.4].
Let

‖u‖ = inf{µ > 0;
∫
Ω

(∣∣∣∣∆uµ ∣∣∣∣p(x)
+
∣∣∣∣∇uµ ∣∣∣∣p(x))

dx ≤ 1},

Then, ‖u‖ is equivalent to the norms ‖.‖p(x) and |4u|p(x)
in X.

Lemma 2.2 (6) For all p,r ∈ C+(Ω) such that r(x) ≤
p∗m(x) for all x ∈Ω, then there is a continuous and com-
pact embedding Wm,p(x)(Ω) ↪→ Lr(x)(Ω), where

p∗m(x) =

 Np(x)
N−mp(x) , if mp(x) < N ;

+∞, if mp(x) ≥N.

Proposition 2.3 Let I(u) =
∫
Ω

(|∆uµ |
p(x) + |∇uµ |

p(x))dx, for

u ∈ Lp(.), we have

(1) ‖u‖ < (=;> 1)⇔ I(u) < (=;> 1)

(2) ‖u‖ ≤ 1⇒ ‖u‖p+ ≤ I(u) ≤ ‖u‖p−

(3) ‖u‖ ≥ 1⇒ ‖u‖p− ≤ I(u) ≤ ‖u‖p+

(4) ‖u‖ → 0(resp→ +∞)⇔ I(u)→ 0, (resp→ +∞)

The proof of this proposition is similar to the proof of
[6, Theorem 1.3] .

Recall that our main result of this work is to show
that problem (1.1) has at least one non-decreasing
sequence of nonnegative eigenvalues (λk)k≥1. To at-
tain this objective we will use a variational tech-
nique based on Ljusternick-Schnirelmann theory on
C1-manifolds [11]. In fact, we give a direct characteri-
zation of λk involving a mini-max argument over sets
of genus greater than k.

We set

λ1 = inf
{∫

Ω

1
p(x)

(|∆u|p(x) + |∇u|p(x))dx,u ∈ X,
∫
Ω

1
p(x)
|u|p(x) dx = 1

}
(2.1)

The value defined in (2.1) can be written as the
Rayleigh quotient

λ1 = inf

∫
Ω

1
p(x)

(|∆u|p(x) + |∇u|p(x))dx,∫
Ω

1
p(x)
|u|p(x)dx

, (2.2)

where the infimum is taken over X \ {0}.
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Definition 2.4 Let X be a real reflexive Banach space
and let X∗ stand for its dual with respect to the pairing
〈., .〉. We shall deal with mappings T acting from X into
X∗. The strong convergence in X (and in X∗) is denoted
by→ and the weak convergence by⇀. T is said to belong
to the class (S+), if for any sequence un in X converging
weakly to u ∈ X and limsup

n→+∞
〈T ,un − u〉 ≤ 0, it follows

that un converges strongly to u in X. We write T ∈ (S+).

Consider the following two functionals defined on X:

Φ(u) =
∫
Ω

1
p(x)

(|∆u|p(x) + |∇u|p(x))dx and ϕ(u)

=
∫
Ω

1
p(x)
|u|p(x) dx,

and setM = {u ∈ X;ϕ(u) = 1}.

Lemma 2.5 We have the following statements

(i) Φ and ϕ are even, and of class C1 on X.

(ii) M is a closed C1-manifold.

Proof. It is clear that ϕ and Φ are even and of class
C1 on X andM = ϕ−1{1}. ThereforeM is closed. The
derivative operator ϕ′ satisfies ϕ′(u) , 0 ∀u ∈ M (i.e.,
ϕ′(u) is onto for all u ∈M). Hence ϕ is a submersion,
which proves thatM is a C1-manifold. Let as split Φ
on two functionals.

Φ(u) = Φ1(u) +Φ2(u),

where

Φ1 =
∫
Ω

1
p(x)
|∆u|p(x) dx; Φ2 =

∫
Ω

1
p(x)
|∇u|p(x) dx.

Now we consider the operator

T1 := Φ ′1 :W 2,p(.)
0 (Ω)→W −2,p′(.)(Ω) is defined as

〈T1(u),v〉 =
∫
Ω

|∆u|p(x)−2∆u∆v dx, for any u,v ∈W 2,p(.)
0 (Ω),

and the p(x)-laplace operator

−4p(x) := T 2 := Φ ′2 :W 1,p(.)
0 (Ω)→W −1,p′(.)(Ω) as

〈−4p(x)(u),v〉 = 〈T2(u),v〉

=
∫
Ω

|∇u|p(x)−2∇u∇v dx, for u,v ∈W 1,p(.)
0 (Ω),

Lemma 2.6 The following statements hold

(i) T1 is continuous, bounded and strictly monotone.

(ii) T1 is of (S+) type.

(iii) T2 is a homeomorphism.

Proof.

(i) We recall the following well-known inequalities,
which hold for any three real a, b and p(

a|a|p−2 − b|b|p−2
)
(a− b)

≥ c(p)


|a− b|p, if p ≥ 2
|a− b|2

(|a|+ |b|)2−p , if 1 < p < 2,

(2.3)

where c(p) = 22−p when p ≥ 2 and c(p) = p − 1
when 1 < p < 2.

Let (un)n ⊂ W
2,p(.)
0 (Ω) and un ⇀ u (weakly) in

W
2,p(.)
0 (Ω). Therefore we have for p(·) ≥ 2.

22−p+
∫
{x∈Ω:p(x)≥2}

|∆un −∆u|p(x) dx

≤
∫
{x∈Ω:p(x)≥2}

(
|∆un|p(x)−2∆un − |∆u|p(x)−2∆u

)
(
∆un −∆u

)
dx

≤
∫
Ω

(
|∆un|p(x)−2∆un − |∆u|p(x)−2∆u

)(
∆un −∆u

)
dx

:= ε( 1
n ).

(2.4)

On the set where 1 < p(·) < 2, we employ (2.3) as
follows:∫

{x∈Ω:1<p(x)<2}
|∆un −∆u|p(x) dx

≤
∫
{x∈Ω:1<p(x)<2}

|∆un −∆u|p(x)

(|∆un|+ |∆u|)
p(x)(2−p(x))

2

(|∆un|+ |∆u|)
p(x)(2−p(x))

2 dx

≤ 2
∣∣∣∣∣∣∣∣ |∆un−∆u|p(x)

(|∆un |+|∆u|)
p(x)(2−p(x))

2

∣∣∣∣∣∣∣∣
L2/p(x)(Ω)

×
∣∣∣∣∣∣∣∣ (|∆un|+ |∆u|) p(x)(2−p(x))

2

∣∣∣∣∣∣∣∣
L

2
2−p(x) (Ω)

≤ 2max

(
∫
Ω

|∆un −∆u|2

(|∆un|+ |∆u|)2−p(x)
dx

) p−
2
,

(∫
Ω

|∆un −∆u|2

(|∆un|+ |∆u|)2−p(x)
dx

) p+
2


×max

(
∫
Ω

(|∆un|+ |∆u|)p(x) dx
) 2−p−

2
;

(∫
Ω

(|∆un|+ |∆u|)p(x) dx
) 2−p+

2


≤ 2max

(p− − 1
) −p−

2
(
ε(

1
n

)
) p−

2
;
(
p− − 1

) −p+
2

(
ε(

1
n

)
) p+

2


×max

(
∫
Ω

(|∆un|+ |∆u|)p(x) dx
) 2−p−

2
;

(∫
Ω

(|∆un|+ |∆u|)p(x) dx
) 2−p+

2

.
(2.5)

Since un is bounded in X, implies that ε( 1
n )→ 0

as n → ∞. Hence, sending n to ∞ in (2.4) and
(2.5), we obtain

lim
n→∞

∫
Ω

|∆un −∆u|p(x) dx = 0.

Since T1 is the Fréchet derivative of Φ1, it fol-
lows that T1 is continuous and bounded so that
we deduce that for all u,v ∈W 2,p(.)

0 (Ω) such that
u , v,

〈T1(u)− T1(v),u − v〉 > 0.

This means that T1 is strictly monotone.
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(ii) Let (un)n be a sequence of X such that

un ⇀ u weakly in W
2,p(.)
0 (Ω) and

limsupn→+∞〈T1(un),un − u〉 ≤ 0. From (2.3), we
have

〈T1(un)− T1(u),un −u〉 ≥ 0, (2.6)

and since un⇀u weakly inW 2,p(.)
0 (Ω), it follows

that

limsup
n→+∞

〈T1(un)− T1(u),un −u〉 = 0. (2.7)

Thus again from (2.3), we have

∫
{x∈Ω:p(x)≥2}

|∆un −∆u|p(x) dx

≤ 2(p−−2)
∫
Ω

A(un,u)dx,∫
{x∈Ω:1<p(x)<2} |∆un −∆u|

p(x)dx

≤ (p+ − 1)
∫
Ω

(A(un,u))
p(x)

2 (B(un,u))(2−p(x)) p(x)
2 dx,

where
A(un,u) =
(|∆un|p(x)−2∆un − |∆u|p(x)−2∆u)(∆un −∆u),

B(un,u) = (|∆un|+ |∆u|)2−p(x).

On the other hand, by (2.6) and since∫
Ω

A(un,u)dx = 〈T1(un)− T1(u),un −u〉,

we can consider 0 ≤
∫
Ω

A(un,u)dx < 1.

We distinguish two cases:

First, If
∫
Ω

A(un,u)dx = 0, then A(un,u) = 0,

since A(un,u) ≥ 0 a.e. in Ω.

Second, If 0 <
∫
Ω

A(un,u)dx < 1. Thus

tp(x) :=
(∫
{x∈Ω:1<p(x)<2}

A(un,u)dx
)−1

is positive

and by applying Young’s inequality we deduce
that∫
{x∈Ω:1<p(x)<2}

[
t(A(un,u))

p(x)
2

]
(B(un,u))(2−p(x)) p(x)

2 dx

≤
∫
{x∈Ω:1<p(x)<2}

(
A(un,u)(t)

2
p(x) + (B(un,u))p(x)

)
dx

The fact that 2
p(x) < 2, we have∫

{x∈Ω:1<p(x)<2}

(
A(un,u)(t)

2
p(x) + (B(un,u))p(x)

)
dx

≤
∫
{x∈Ω:1<p(x)<2}

(
A(un,u)t2 + (B(un,u))p(x)

)
dx

≤ 1 +
∫
{x∈Ω:1<p(x)<2}

(B(un,u))p(x) dx.

Hence.∫
{x∈Ω:1<p(x)<2}

|∆un −∆u|p(x)dx

≤
(∫
{x∈Ω:1<p(x)<2}

A(un,u)dx
) 1

2
(
1 +

∫
Ω

(B(un,u))p(x) dx

)
.

Since
∫
Ω

(B(un,u))p(x) dx is bounded, then∫
{x∈Ω:1<p(x)<2}

|∆un −∆u|p(x)dx→ 0 as n→∞

(iii) Note that the strict monotonicity of T1 implies
that T1 is into operator.

Moreover, T1 is a coercive operator. Indeed,
from Proposition 2.3 and since p− − 1 > 0, for

each u ∈W 2,p(x)
0 (Ω) such that ‖u‖ ≥ 1, we have

〈T1(u),u〉
‖u‖

=
Φ ′(u)
‖u‖

≥ ‖u‖p
−−1→∞, as ‖u‖ →∞.

Finally, thanks to Minty-Browder Theorem [12],
the operator T1 is an surjection and admits an
inverse mapping.
To complete the proof of (iii), it suffices then
to show the continuity of T −1

1 . Indeed, let (fn)n
be a sequence of W −2,p′(.)(Ω) such that fn → f

in W −2,p′(.)(Ω). Let un and u in W 2,p(.)
0 (Ω) such

that Since
∫
Ω

(B(un,u))p(x) dx is bounded, then∫
{x∈Ω:1<p(x)<2}

|∆un −∆u|p(x)dx→ 0 as n→∞

(iii) Note that the strict monotonicity of T1 implies
that T1 is into operator.
Moreover, T1 is a coercive operator. Indeed,
from Proposition 2.3 and since p− − 1 > 0, for

each u ∈ W 2,p(x)
0 (Ω) such that ‖u‖ ≥ 1, we have

〈T1(u),u〉
‖u‖ = Φ ′(u)

‖u‖ ≥ ‖u‖
p−−1→∞, as ‖u‖ →∞.

T −1
1 (fn) = un and T −1

1 (f ) = u.

By the coercivity of T1, we deduce that the se-
quence (un)n is bounded in the reflexive space

W
2,p(.)
0 (Ω). For a subsequence if necessary, we

have un⇀ û in W 2,p(.)
0 (Ω), for a some û. Then

lim
n→+∞

〈T1(un)−T1(u),un−û〉 = lim
n→+∞

〈fn−f ,un−û〉 = 0.

It follows by the second assertion and the conti-
nuity of T1 that

un→ û in W 2,p(x)
0 (Ω) strongly and

T1(un)→ T1(û) = T1(u) in W −2,p′(x)(Ω)

Further , since T1 is an into operator, we con-
clude that u ≡ û.

This completes the proof.
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Lemma 2.7 [13] The following statements hold

(i) −4p(x) := T2 is continuous, bounded and strictly
monotone.

(ii) −4p(x) := T2 is of (S+) type.

(iii) −4p(x) := T2 is a homeomorphism.

The following lemma plays a central key to prove our
main result related to the existence.

Lemma 2.8 We have the following statements

(i) ϕ′ is completely continuous.

(ii) The functional Φ satisfies the Palais-Smale condi-
tion onM, i.e., for
{un} ⊂M, if {Φ(un)}n is bounded and

Φ ′(un)→ 0 as n→∞. (2.8)

{un} has a convergent subsequence in X.

Proof (i) First let us prove that ϕ′ is well defined. Let
u,v ∈ X. We have

〈ϕ′(u),v〉 =
∫
Ω

|u|p(x)−1v dx.

By applying Hölder’s inequality, we obtain

〈ϕ′(u),v〉 ≤ |u|p(x)−1
p(x) |v|p(x)

Then
|〈ϕ′(u),v〉| ≤ C‖u‖p(x)−1‖v‖,

where C is the constant given by the embedding of

W
2,p(.)
0 (Ω) in Lp(.)(Ω). Hence

‖ϕ′(u)‖∗ ≤ C‖u‖p(x)−1,

where ‖.‖∗ is the dual norm associated with ‖.‖.
For the complete continuity of ϕ′ , we argue as fol-
low. Let (un)n ⊂ X be a bounded sequence and
un ⇀ u (weakly) in X. Due the fact that the embed-

ding W
2,p(.)
0 (Ω) ↪→ Lp(.)(Ω) is compact un converges

strongly to u in Lp(.)(Ω), and there exists a positive
function g ∈ Lp(.)(Ω) such that

| u |≤ g a.e. in Ω.

Since g ∈ Lp(.)−1(Ω), it follows from the Dominated
Convergence Theorem that

| un |p(x)−2 un→| u |p(x)−2 u in Lp
′(.)(Ω)

That is,
ϕ′(un)→ ϕ′(u) in Lp

′(.)(Ω).

Recall that the embedding

Lp
′(.)(Ω) ↪→W −2,p′(.)(Ω)

is compact. Thus

ϕ′(un)→ ϕ′(u) in X∗

This proves the assertion (i).
(ii) by the definition of Φ we have

Φ(u) ≥ 1
p+ ‖u‖

p− ,

then un is bounded in X. So we deduce that there ex-
ists a subsequence, again denoted {un}, and u ∈ X such
that {un} converges weakly to u in X. On the other
hend, by (2.8) we get

lim
n→∞
〈Φ ′(un), (un −u)〉 = 0. (2.9)

Then, by (ii) of lemma 2.6 and (ii) of lemma 2.7, we
conclude that {un} converges strongly to u ∈ X. This
achieves the proof the lemma.

3 Existence results

Set

Γj = {K ⊂M : K symmetric, compact and γ(K) ≥ j} ,

where γ(K) = j being the Krasnoselskii’s genus of set
K , i.e., the smallest integer j, such that there exists an
odd continuous map from K to R

j \ {0}.
Now, let us establish some useful properties of

Krasnoselskii genus proved by Szulkin [12].

Lemma 3.1 Let X be a real Banach space and A, B be
symmetric subsets of E \ {0} which are closed in X. Then

(a) If there exists an odd continuous mapping
f : A→ B, then γ(A) ≤ γ(B)

(b) If A ⊂ B then γ(A) ≤ γ(B).

(c) γ(A∪B) ≤ γ(A) +γ(B).

(d) If γ(B) < +∞ then γ(A−B ≥ γ(A)−γ(B).

(e) If A is compact then γ(A) < +∞ and there exists a
neighborhood N of A, N is a symmetric subset of
X \ {0}, closed in X such that γ(N ) = γ(A).

(f) If N is a symmetric and bounded neighborhood of
the origin in R

k and if A is homeomorphic to the
boundary of N by an odd homeomorphism then
γ(A) = k.

(g) If X0 is a subspace of X of codimension k and if
γ(A) > k then A∩X0 , φ.

Let us now state the first our main result of this
paper using Ljusternick-Schnirelmann theory:

Theorem 3.2 For any integer j ∈N∗,

λj = inf
K∈Γj

max
u∈K

Φ(u),

is a critical value of Φ restricted on M. More precisely,
there exist uj ∈ K , such that

λj = Φ(uj ) = sup
u∈K

Φ(u),

and uj is a solution of (1.1) associated to positive eigen-
value λj . Moreover,

λj →∞, as j→∞
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Proof We only need to prove that for any j ∈N∗, Γj , ∅
and the last assertion. Indeed, since W 2,p(.)

0 (Ω) is sep-

arable, there exists (ei)i≥1 linearly dense in W 2,p(.)
0 (Ω)

such that
suppei ∩ suppen = ∅ if i , n. We may assume that
ei ∈M (if not, we take e′i ≡

ei

[p(x)ϕ(ei )]
1
p(x)

).

Let now j ∈N∗ and denote

Fj = span{e1, e2, . . . , ej }

Clearly, Fj is a vector subspace with dim Fj = j. If
v ∈ Fj , then there exist α1, . . .αj in R, such that

v =
j∑
i=1

αiei .

Thus

ϕ(v) =
j∑
i=1

|αi |p(.)ϕ(ei) =
j∑
i=1

|αi |p(.).

It follows that the map

v 7→ (ϕ(v))
1
p(.) = |||v|||

defines a norm on Fj . Consequently, there is a con-
stant c > 0 such that

c ‖v‖ ≤ |||v||| ≤ 1
c
‖v‖.

This implies that the set

Vj = Fj ∩
{
v ∈W 2,p(.)

0 (Ω) : ϕ(v) ≤ 1
}
,

is bounded because Vk ⊂ B(0, 1
c ), where

B
(
0,

1
c

)
=

{
u ∈W 2,p(.)

0 (Ω), such that‖u‖ ≤ 1
c

}
.

Thus, Vj is a symmetric bounded neighborhood of
0 ∈ Fj . Moreover, Fj ∩M is a compact set. By (f ) of
Lemma 2.7, we conclude that γ(Fj ∩M) = j and then
we obtain finally that Γj , ∅. This completes the proof
of first part of the theorem.
Now, we claim that

λj →∞, as j→∞

Let (ek , e∗n)k,n be a bi-orthogonal system such that ek ∈
W

2,p(.)
0 (Ω) and e∗n ∈ W −2,p′(.)(Ω), the (ek)k are linearly

dense in W 2,p(.)
0 (Ω) and the (e∗n)n are total for the dual

W −2,p′(.)(Ω)). For k ∈N∗, set

Fk = span
{
e1, . . . , ek

}
and F⊥k = span

{
ek+1, ek+2, . . .

}
.

By (g) of Lemma 2.7, we have for any K ∈ Γk , K∩F⊥k−1 ,
∅. Thus

tk = inf
K∈Γk

sup
u∈K∩F⊥k−1

Φ(u)→∞, as k→∞

Indeed, if not, for k is large, there exists uk ∈ F⊥k−1 with
|uk |p(.) = 1 such that

tk ≤ Φ(uk) ≤M,

for some M > 0 independent of k. Thus ‖uk‖p(.) ≤M.
This implies that (uk)k is bounded in X. For a sub-
sequence of {uk} if necessary, we can assume that {uk}
converges weakly in X and strongly in Lp(.)(Ω). By our
choice of F⊥k−1, we have uk ⇀ 0 weakly in X, because
〈e∗n, ek〉 = 0, for any k > n. This contradicts the fact that
|uk |p(.) = 1 for all k. Since λk ≥ tk the claim is proved.

Corrolary 3.3 we have the following statements:

(i) λ1 =
inf

{∫
Ω

1
p(x) (|∆u|p(x) + |∇u|p(x))dx,u ∈ X,

∫
Ω

1
p(x) |u|

p(x) dx = 1
}
.,

(ii) 0 < λ1 ≤ λ2 ≤ · · · ≤ λn→ +∞,

(iii) λ1 = InfΛ ( i.e., λ1 is the smallest eigenvalue in
the spectrum of (1.1)).

Proof

(i) For u ∈ M, set K1 = {u,−u}. It is clear that
γ(K1) = 1, Φ is even and that

Φ(u) = max
K1

Φ ≥ inf
K∈Γ1

max
u∈K

Φ(u).

Thus

inf
u∈M

Φ(u) ≥ inf
K∈Γ1

max
u∈K

Φ(u) = λ1.

On the other hand, ∀K ∈ Γ1, ∀u ∈ K , we have

sup
u∈K

Φ ≥ Φ(u) ≥ inf
u∈M

Φ(u).

It follows that

inf
K∈Γ1

max
K

Φ = λ1 ≥ inf
u∈M

Φ(u).

Then
λ1 = inf

{∫
Ω

1
p(x) (|∆u|p(x) + |∇u|p(x))

dx,u ∈ X,
∫
Ω

1
p(x) |u|

p(x) dx = 1
}
.

(ii) For all i ≥ j, we have Γi ⊂ Γj and in view of defi-
nition of λi , i ∈N∗, we get λi ≥ λj . As regards to
λn→∞, it is proved before in Theorem 3.2.

(iii) Let λ ∈Λ. Thus there exists uλ an eigenfunction
of λ such that∫

Ω

1
p(x)
|uλ|p(x) dx = 1.

Therefore

∆2
p(x)uλ −4p(x)uλ = λ|uλ|p(x)−2uλ in Ω.

Then∫
Ω

1
p(x)

(|∆uλ|p(x) + |∇uλ|p(x))dx = λ
∫
Ω

1
p(x)
|uλ|p(x) dx.

In view of the characterization of λ1 in (2.1), we
conclude that

λ =

∫
Ω

1
p(x)

(|∆uλ|p(x) + |∇uλ|p(x))dx∫
Ω

1
p(x)
|uλ|p(x) dx

=
∫
Ω

1
p(x)

(|∆uλ|p(x) + |∇uλ|p(x))dx ≥ λ1.

This implies that λ1 = infΛ.
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