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We prove the existence of at least one non-decreasing sequence of positive
eigenvalues for the problem

Az(x)u = Dp(oth = MulP®=2y,  inQ

u e W2PH(Q)nw, "),

Our analysis mainly relies on wvariational arguments involving
Ljusternik-Schnirelmann theory.

1 Introduction

Consider the following nonlinear eigenvalue problem
A;?;(x)” —Appu = AulP®)=2y,
ue Woz,p(x)(Q) N W(}’P(X)(Q),

in Q
(1.1)

where Q is a bounded domain in RN (N > 4).
The real ) is a parameter which plays the role of eigen-
value. For a function p(.) € C(Q), we assume the fol-
lowing hypothesis

1 <p” =minp(x) <p" = maxp(x) < +oo.
xeQ) xeQ)

(1.2)

A;(x)u := A(JAulP™®)=2Au), is the p(x)-biharmonic op-
erator which is a natural generalization of the p-
biharmonic (where the exponent p is constant) and
Apytt = div(|Vu[P®=2Vu) is the p(x)-harmonic oper-
ator.

It is well known that elliptic equations involv-
ing the non-standard growth are not trivial general-
izations of similar problems studied in the constant
case since the non-standard growth operator is not
homogeneous and, thus, some techniques which can
be applied in the case of the constant growth oper-
ators will fail in this new situation, such as the La-
grange multiplier theorem, see, e.g [1, 2]. Problerms

with p(x)-growth conditions are an interesting topic,
which arises from nonlinear electrorheological fluids
and elastic mechanics.

Recently for the case p(x) = p constant Giri,

Choudhuri and Pradhan [3] proved the existence
and concentration phenomena of solutions on the set
V=1{0} for the following p-biharmonic elliptic equa-
tion:
ASu—=Apu+AV(x)ulP~?u = f(x,u) xeRN, as A - o0
unther some assumptions on the nonlinear function
f. By variational methods, Lihua Liu and Caisheng
Chen [4] establish the existence of infinitely many
high-energy solutions to the equation

A;u —Apu + V(x)ulP~u = f(x,u), xeRN,

with a concave-convex nonlinearity,i.e.,
Fx,u) = Ahy (x)|ul™2u + hy(x)|ul9?u, 1 <m<p<g<

«_ PN
P =N72

In our case by using the Ljusternik-Schnirelmann the-
ory we obtain the existence of infinitely many solu-
tions for the problem (1.1).

The outline of the rest of the paper is as follows. In
Section[2]we present some definitions and basic resuls
that are necessary. In Section [3| we give the proof of
our main result about existence of solutions for prob-

lem (1.1).
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2 Preliminaries and Useful re-
sults

We state some basic properties of the variable expo-
nent Lebesgue-Sobolev spaces LP)(QQ) and W™PL)(Q).
We refer the reader to the monograph by [5] and to the
references therein. Define the generalized Lebesgue
space by

Lp(‘)(Q) = {u : Q — R measurable and

f Ju(x)P¥ dx < oo},
Q

endowed with the Luxemburg norm

. U p(x)
|| .:mf{ >0:j — dxsl}
p() K Q|#‘

To manipulate this spaces better, we use the modular
mapping
p:LPYQ) >R

defined by
plu = | Pt ax
Q

Proposition 2.1 (6) Under the hypothesis (1.2), the
space (LPX)(Q), |- |p(x)) is separable, uniformly convex, re-
flexive and its conjugate dual space is LP'0)(Q)) where p’(.)
is the conjugate function of p(.), related by

p(x) , YxeQ.

For u € LPY(Q) and v € LP'O(Q) we have

1 1
u(x)v(x)dx S(—_+ ,_)lul Molyroy < 2lul,o vl -
|J‘Q | P~ p p()IVp’() pOIIp()

Sobolev space with variable exponent W™PL(Q) are
defined as

WmPO(Q) = {u e IPV(Q): D%u € PY(Q),|a] < m}
olel

—u

a] 5 _ap an Y4,
) i Jx, a.xz 00Xy ' o
tributions sense) with @ = (ay,..., ay) is a multi-index

where D%u = (the derivation in dis-

N
and |a| = ) @;. The space W")(Q), equipped with

i=1
the norm

ltllpig = ) 1D ulp(a),

lajl<m
is a Banach, separable and reflexive space. For more
details, we refer the reader to [6, 7, 8] and [ 9].
We denote by W(;n’p(x)(Q) the closure of C°(Q) in
WmPE)(Q).
Note that the weak solutions of the problem are
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considered in the Sobolev space
W2PH(Q)n Wol’p(x)(Q) is equiped with the norm

lullpx) = 128y + [Vid] )
In the sequel, we Set
x = WP Q) nwy P Q)
Then, endowed with the norm |[ul,(x), X is a separa-
ble and reflexive Banach space. Moreover, |.||,(x) and

|Aul,(x) are two equivalent norms of X by [10, Theo-
rem4.4].

Let
|WH=mﬂu>mJﬂ(éE
o\l B

Then, [|u]| is equivalent to the norms ||.|| ;) and |Aulpyy)
in X.

p(x) |Vu
+ —_—

)
P )del},
2

Lemma 2.2 (6) For all p,r € C,(Q) such that r(x) <

pi(x) for all x € Q, then there is a continuous and com-
pact embedding W™PX)(Q) < L'™)(Q), where

Np(x)
piul) = 4 Nl

if mp(x) <N;
+00, if mp(x) > N.

Proposition 2.3 Let I(u) = fQ(I%lp(") + I%Ip(x))dx, for

u € LPY), we have
(1) lull <(=>1) e I(u) <(=>1)
(2) llull< 1= NullP” < I(u) <l
(3) llull > 1= [lullP” < I(u) < lullP”
(4) |lu]l = O(resp — +o0) & I(u) — 0, (resp — +o0)

The proof of this proposition is similar to the proof of
[6, Theorem 1.3].

Recall that our main result of this work is to show
that problem has at least one non-decreasing
sequence of nonnegative eigenvalues (Ag);>1. To at-
tain this objective we will use a variational tech-
nique based on Ljusternick-Schnirelmann theory on
C!-manifolds [11]. In fact, we give a direct characteri-
zation of A; involving a mini-max argument over sets
of genus greater than k.

We set

1
p(x)

A= inf{fo p(x)
(2.1)

The value defined in (2.1) can be written as the
Rayleigh quotient

(IAuP™) + |VuPX) dx, u € X,—[
Q

J~EéaﬂAuW“LHVuW“UdL
Ay =inf 22

J L|u|p(X)dx ’
o P

where the infimum is taken over X \ {0}.

(2.2)
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Definition 2.4 Let X be a real reflexive Banach space
and let X* stand for its dual with respect to the pairing
(.,.). We shall deal with mappings T acting from X into
X*. The strong convergence in X (and in X*) is denoted
by — and the weak convergence by —. T is said to belong
to the class (S™), if for any sequence u, in X converging
weakly to u € X and limsup(T,u, —u) < 0, it follows

n—+00

that u,, converges strongly to u in X. We write T € (S7).

Consider the following two functionals defined on X:

O (u) = L }ﬁ(muv’m +|VulP™))dx and ¢(u)

1
= | —=luPWdx,
J;zp()
and set M ={u e X;p(u)=1}.

Lemma 2.5 We have the following statements
(i) © and ¢ are even, and of class C! on X.
(ii) M is a closed Cl—manifold.

Proof. It is clear that ¢ and @ are even and of class
C!' on X and M = ¢~!{1}. Therefore M is closed. The
derivative operator ¢’ satisfies @’(u) = 0 Yu € M (i.e.,
@’(u) is onto for all u € M). Hence ¢ is a submersion,
which proves that M is a C!-manifold. Let as split @

on two functionals.
O(u) =Dy (u) + Dy(u),

where

O, :j L|Au|P(X
o p(x)

Now we consider the operator
T, =] : WoPY(Q) > W2P'0(Q) is defined as

) dx; ®, :J L|Vu|P(X)
o p(x)

(Ty(u),v) = J;) |AulP¥"2AuAvdx, forany u,v e Woz'p(')(Q),
and the p(x)-laplace operator
~Ap( = T2:= ) Wy P (Q) » WP 0(Q) as
(=8p(x) (), v) =(Ta(u),v)
= J-Q IVulPO-2vuVvdx, foru,ve Wol’p(')(Q),

Lemma 2.6 The following statements hold
(i) Ty is continuous, bounded and strictly monotone.
(ii) Ty is of (S,) type.
(iii) T, is a homeomorphism.
Proof.

(i) Werecall the following well-known inequalities,
which hold for any three real a, b and p

(alalP~2 = b2 (@~ )
la—0bpP, ifp>2 (2.3)
> c(p) |a—b|227 , <p<2,
(al+161) 7

www.astesj.com

where ¢(p) = 2P when p > 2 and ¢(p)
when 1 <p<2.

:p—l

Let (u,), C W()Z,p(.)(Q) and u,, — u (weakly) in
Woz’p(‘)(Q). Therefore we have for p(-) > 2.

22p+j |Au, — AulP¥) dx
{xeQ:p(x)=2}

< (|Aun|p(")_2Aun - |Au|p(x)_2Au)
{xeQ:p(x)>2}

(Aun - Au)dx

< J- (|Aun|p(")_2Aun - |Au|p(x)_2Au)(Aun - Au)dx
Q

= ().
(2.4)

On the set where 1 < p(-) < 2, we employ (2.3) as
follows:

f |Au, = AufP™)
{xeQ:1<p(x)<2}
|Au,, — AulP™)

<
- (x)(2-p(x))
{xeQ:1<p(x)<2} (|Au |+|Au|)px 2”
p(x))
(1A, |+ [Aul)” dx
|Au,—AulP®
P(X)(ZZ—P(X))

-

2/p(x)
(1At +Aw]) LEPEQ)
p(x)(2-p(x)) |

|| 1w+ 140a) =

2
L2-px) Q)
p_
2

_ 2
< 2max (J A Au2| dx)
Q (|Auy| +|Aul)*P)

(J |Au, — Aul? dx)”z
O (|Auy] +|Aul)> P
2-p

xmax{(j (1A, + | Aul)P™) dx)T;
Q

|

(] 0+ 2yt &) | |
soval e ()
Xmax{(fﬁumnhmun“ i)

(L (1A + 18P ) F }
(2.5)

Since u,, is bounded in X, implies that e(%) -0
as n — oo. Hence, sending n to oo in (2.4) and
(2.5), we obtain

lim
n—00 Q

P
2

|Au, — AulP™ dx = 0.

Since T; is the Fréchet derivative of @y, it fol-
lows that Tj is continuous and bounded so that
we deduce that for all u,v € Woz’p(')(Q) such that
u+v,

(Ty(u) =Ty (v),u —v) > 0.

This means that T is strictly monotone.
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(ii) Let (u,), be a sequence of X such that Hence.
u, — u weakly in W()Z'p(‘)(Q) and J A AuP¥d
: _ u, — Au X
E;r\l}:upn_)Jroo(Tl(un), u, —u)y < 0. From (2.3), we (reQ:1<p()<2] n
(Ty(up) = Ty (u), 1y —u) 2 0, (2.6)

and since u, — u weakly in Woz'p(')(()), it follows
that

limsup(T (u,,) — Ty (1), u,, —u) = 0.

n—+oo

Thus again from (2.3), we have

f |Au, — AulP™) dx
{xeQ:p(x)=>2}

<2072 | A(uy,u)dx,

—AulPWdyx
)

(2.7)

I{er:l<p(x)<2} |Au”
p(

<(p* - 1)] (At 1) (Bt 1)) P00 i,
Q
where
A(un! ”) =

(1A, PD=2 Aut,, — |Au P2 Au)(Au,, — Au),

By, 1) = (|Au,| +|Aul)? X,

On the other hand, by (2.6) and since

f Aty ) dx = (Ty (10) = Ty (), sy — 1),
Q

we can consider 0 < J. Ay, u)dx <1.

Q

We distinguish two cases:

First, If f A(u,,u)dx =0, then A(u,u) = 0,
Q

since A(u,, 1) >0 a.e. in Q.

Second, If 0 < f A(uy,u)dx <1. Thus
Q

-1
P = (_f A(un,u)dx) is positive
{xeQ:1<p(x)<2}

and by applying Young’s inequality we deduce
that

px) p(x)

J [#(A (1) 7 [(Blaty, ) 2PN dxc
{xeQ:1<p(x)<2}

2
<| (Att 0 + (Bl 1))
{xeQ:1<p(x)<2}

The fact that —2-
p(x)

< 2, we have
2
. (Atat 10001757 + (BLu 1)) dx
{xeQ:1<p(x)<2}

< J (A, u)t? + (B, u))P™)) dx
{xeQ:1<p(x)<2}

<1+ j (B(tty, 10))P™ dx.
{xeQ:1<p(x)<2}

www.astesj.com

(iii)

(iii)

1
2
< U A(un,u)dx) (1 +_[ (B(1tyy, 1))P¥) dx).
{xeQ:1<p(x)<2} Q

Since J (B(u,, u))*™) dx is bounded, then
Q
f |Au, — AulP¥dx — 0 as n — oo
{xeQ:1<p(x)<2}

Note that the strict monotonicity of T} implies
that T; is into operator.

Moreover, T; is a coercive operator. Indeed,
from Proposition and since p~ -1 > 0, for

eachu € Woz’p(x)(Q) such that ||u|| > 1, we have

(Ty(w)u) _ ©'(u)
ladl ~ Tul

Finally, thanks to Minty-Browder Theorem [12],
the operator T; is an surjection and admits an
inverse mapping.

To complete the proof of (iii), it suffices then
to show the continuity of Tl_l. Indeed, let (f,),
be a sequence of W~2P'/(Q) such that f, — f

in W’ZP’(')(Q). Let u, and u in Woz'p(')(()) such
that Since J (B(u,,,u))p(x) dx is bounded, then
Q

> [ullP 7! = oo, as [lull = co.

f |Au, — AulP¥dx — 0 as n — oo
{xeQ:1<p(x)<2}

Note that the strict monotonicity of T; implies

that T; is into operator.

Moreover, T; is a coercive operator. Indeed,

from Proposition and since p~ —1 > 0, for
2,

each u e W, p(x)(Q) such that ||Ju|| > 1, we have

(Ty(w)u) _ ©'(w)
Tl Tl

T (f,) = u, and T H(f) = u.

By the coercivity of T}, we deduce that the se-
quence (u,), is bounded in the reflexive space

>ullP" ! > 00, as||ul| = .

W()Z'p(‘)(Q). For a subsequence if necessary, we
have u, — win Woz’p(')(Q), for a some u. Then

lim (T (uy,)-Ty(u), u,—u) = ngTQQ(fn_f’ uy—u)y=0.

n—+o0
It follows by the second assertion and the conti-
nuity of T that

u, > uin Woz’p(x)(Q) strongly and

Ty (u,) = Ty () = Ty (u) in W—Z,p’(x)(Q)

Further , since T; is an into operator, we con-
clude that u = u.

This completes the proof.
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Lemma 2.7 [13] The following statements hold

(i) —Dp) := Ty is continuous, bounded and strictly
monotone.

(i) —bp(x) = Ty is of (Sy) type.
(iii) —Ap(x) = T, is a homeomorphism.

The following lemma plays a central key to prove our
main result related to the existence.

Lemma 2.8 We have the following statements
(i) @’ is completely continuous.

(ii) The functional ® satisfies the Palais-Smale condi-
tion on M, i.e., for
{u,} C M, if {O(uy,)}, is bounded and

D’ (u,) >0 asn— co. (2.8)

{u,} has a convergent subsequence in X.

Proof (i) First let us prove that ¢’ is well defined. Let
u,v € X. We have

('), v) = f P d.
Q

By applying Holder’s inequality, we obtain

x)—

(@ (), v) < b Wl
Then
K’ (u),0)] < CllulP ]l
where C is the constant given by the embedding of
WePY(Q) in LPO(Q). Hence
llp’ ()l < ClulP™,

where ||.||, is the dual norm associated with ||.||.

For the complete continuity of ¢’, we argue as fol-
low. Let (u,), € X be a bounded sequence and
u, — u (weakly) in X. Due the fact that the embed-

ding Woz’p(')(Q) — LPU(Q) is compact u, converges
strongly to u in LPO(Q), and there exists a positive
function g € LP)(Q) such that

|u|<gae. in Q.

Since g € LPO-1(Q)), it follows from the Dominated
Convergence Theorem that

|ty P72 0y =] P72 in L70(Q)

That is, )
@ (u,) = @’(u) in L7 (Q).

Recall that the embedding
LP’(-)(Q) s W—ZP'(-)(Q)

is compact. Thus

*

@' (un) > @'(u) in X

www.astesj.com

This proves the assertion (i).
(ii) by the definition of ® we have

1 _
O(u) > Fllull” ,

then u,, is bounded in X. So we deduce that there ex-
ists a subsequence, again denoted {u,}, and u € X such
that {u,} converges weakly to u in X. On the other

hend, by (2.8) we get
lim (D@’ (u,), (4, —u)) = 0.

n—-oo
Then, by (ii) of lemma and (i1) of lemma we
conclude that {u,} converges strongly to u € X. This
achieves the proof the lemma.

(2.9)

3 Existence results

Set
I‘]- ={K ¢ M: K symmetric, compact and y(K) > j},

where y(K) = j being the Krasnoselskii’s genus of set
K, i.e., the smallest integer j, such that there exists an
odd continuous map from K to R/ \ {0}.

Now, let us establish some useful properties of
Krasnoselskii genus proved by Szulkin [12].

Lemma 3.1 Let X be a real Banach space and A, B be
symmetric subsets of E \ {0} which are closed in X. Then

(a) If there exists an odd continuous mapping
f:A— B, then y(A) < y(B)
(b) If AC B then y(A) < y(B).
(c) Y(AUB) <y(A)+y(B).
(d) If y(B) < +oco then y(A—B > y(A) - y(B).
(e) If A is compact then y(A) < +oo and there exists a

neighborhood N of A, N is a symmetric subset of
X\ {0}, closed in X such that y(N) = y(A).

() If N is a symmetric and bounded neighborhood of
the origin in R and if A is homeomorphic to the
boundary of N' by an odd homeomorphism then
y(A)=k.

(g) If Xy is a subspace of X of codimension k and if
Y(A) >k then AN X = ¢.

Let us now state the first our main result of this
paper using Ljusternick-Schnirelmann theory:

Theorem 3.2 For any integer j € IN%,

Aj = inf max®(u),
Kel; uek

is a critical value of ® restricted on M. More precisely,
there exist uj € K, such that

Aj = O(uj) =supP(u),

uek

and u; is a solution of (1.1)) associated to positive eigen-
value /\]-. Moreover,

/\j—>oo, asj — oo
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Proof We only need to prove that for any j € IN*, I = 0
and the last assertion. Indeed, since Woz’p(')(Q) is sep-

arable, there exists (e;);>; linearly dense in Woz’p(')(())
such that
suppe; Nsuppe, = 0 if i # n. We may assume that
e; € M (if not, we take ¢/ = ——%——).
[p(x)p(e;)] P
Let now j € IN* and denote
Fj =spanfey, ey,..., €}

Clearly, F; is a vector subspace with dim F; = j. If
vVE F]-, then there exist ay,...q; in R, such that

j j
o)=Y lailPVple) =) lailt.
i=1 i=1

It follows that the map

v ()70 = ]|

defines a norm on F;. Consequently, there is a con-
stant ¢ > 0 such that

1
clvll < liivlil < vl
This implies that the set
2,p(.

Vi :Fjﬂ{vewo p()(Q):(p(v)g 1},
is bounded because V; C B(0, %), where

1 1

B(0,2)= {u e W2P(Q), such that|ju] < E}'

Thus, V; is a symmetric bounded neighborhood of
0 € F;. Moreover, F; N M is a compact set. By (f) of
Lemma we conclude that y(F; N M) = j and then
we obtain finally that I # 0. This completes the proof
of first part of the theorem.

Now, we claim that

Aj > 00, a8 j —> 00

Let (ex, €;,)r,n be a bi-orthogonal system such that e €
WoP(Q) and €, € W=2#'0(Q), the (e) are linearly
dense in Woz'p(')(Q) and the (e},), are total for the dual
W=2P'()(QQ)). For k € N¥, set

F, = span{el,...,ek} and FkL = span{ek+1,ek+2,...}.

By (g) of Lemma we have for any K € Iy, KNF;- | #
0. Thus

fr=inf sup D(u) > o0, ask - o0
Kelk uekNFy- |

Indeed, if not, for k is large, there exists uy € FkL_1 with
[uk|p() = 1 such that

te <DP(ux) <M,

www.astesj.com

for some M > 0 independent of k. Thus [lull,) < M.
This implies that (uy); is bounded in X. For a sub-
sequence of {uy} if necessary, we can assume that {uy}
converges weakly in X and strongly in LP*)(Q). By our
choice of Fkl—l' we have up — 0 weakly in X, because
(e}, exy =0, for any k > n. This contradicts the fact that
luklp) =1 for all k. Since A > t; the claim is proved.

Corrolary 3.3 we have the following statements:
(i) A=
inf{fQ lﬁ(lAulp(") +|VulP®)dx,u € X, fQ ﬁlulp(") dx = 1}.,
(ii)) 0< A <Ay <o <A, > Hoo,

(iii) Ay = InfA (ie., Ay is the smallest eigenvalue in

the spectrum of (1.1)).
Proof

(i) For u € M, set Ky = {u,—u}.
y(Ky) =1, @ is even and that

It is clear that

O (1) = max D > inf maxD(u).
K Kely uek

Thus

inf @(u) > inf max®(u) = Ay.
ueM Kely uek

On the other hand, VK €I, Yu € K, we have
sup® > D(u) > inf O(u).
uek ueM

It follows that

inf max® = A; > inf O(u).
Kel K ueM

Then
Ay =inf{],, S (AUl 4+ Vulpt)

dx,u € X,JQ !%x)lulp(x)dx = 1}.

(ii) For alli > j, we have I; C I and in view of defi-
nition of A;,i € N, we get A; > A;. As regards to

Ay — oo, it is proved before in Theorem [3.2]

(iii) Let A € A. Thus there exists 1, an eigenfunction
of A such that
1
—|u |p(x) dx = 1.
JQ p(x)
Therefore
Af;(x)u)\ = Dpytia = Aluy P20 in Q.

Then
f L(|Au/\|l’(x) + IVM,\V)(X))dx — AJ Llu/\lp(x) dx.

o p(x) o p(x)

In view of the characterization of A; in (2.1), we
conclude that

1
L A P

1
—— |y P9 dx
J-Q px)

= J }%(Muﬂp(’“) + Vi, P¥)dx > Ay,
Q

This implies that A; =infA.

A=
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